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Embedded solitons in a three-wave system
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We report a rich spectrum of isolated solitons residing ingefebeddednto) the continuous radiation
spectrum in a simple model of three-wave spatial interaction in a second-harmonic-generating planar optical
waveguide equipped with a quasi-one-dimensional Bragg grating. An infinite sequence of fundamental em-
bedded solitons is found, each one differing by the number of internal oscillations. Branches of these zero-
walkoff spatial solitons give rise, through bifurcations, to several secondary branches of walking solitons. The
structure of the bifurcating branches suggests a multistable configuration of spatial optical solitons, which may
find straightforward applications for all-optical switching.

PACS numbe(s): 42.65.Tg, 42.65.Ky, 42.65.Wi, 02.60.Lj

[. INTRODUCTION verified by direct simulations of the model considered. It was
demonstrated that ES is semistableobject which is fully

Recent studies have revealed a novel classrobedded stable to linear approximation, but is subject to a slowly
solitons(ES9 in various nonlinear-wave systems. An ES is agrowing (subexponential one-sided nonlinear instability.
solitary wave which exists despite having its internal fre-D€velopment of this weak instability depends on values of
quency in resonance with lineéradiation waves. ESs may the system’s parameters; in some cases, it is developing so
exist ascodimension-1solutions, i.e., at discrete values of slowly that the ES, o all practical purposes, may be regarded
the frequency, provided that the spectrum of the correspondalS a fully stable objed]

ing i ed term haat | o b h In the previously studied models, only a few branches of
ing linearized system hasit leas} two branches, one corre- g ywere found, and only after careful numerical searching,
sponding to exponentially localized solutions, the other on

h o ) hich suggest they may be hard to observe in a real experi-
to delocalized radiation modes. In such systems, quasilocafnent. The present work aims to investigate ESs in a recently
ized solutions(or “generalized solitary wavesT1]) in the introduced model of a three-wave interaction in a quadrati-
form of a SOlitary wave reSting on tOp of a Sma”'amplitudeca"y nonlinear p|anar Waveguide with a quasi_one_
continuous-wavecw) background are generf2]. However,  dimensional Bragg gratingi8], which can be quite easily
at some special values of the internal frequency, the amplifabricated. It will be found that ESs occur in abundance in
tude of the background may exactly vanish, giving rise to arthis model; hence it may be much easier to observe them
isolated soliton embedded into the continuous spectrum. experimentally. It should also be stressed that, unlike previ-
Examples of ESs are available in water-wave models, takeusly studied models, in which ESs appear in relatively ex-
ing into account capillarity{3], and in several nonlinear- otic conditions, e.g., as a result of adding singular perturba-
optical systems, including a Bragg grating incorporatingtions [4] or specially combining different nonlineariti¢5],
wave-propagation ternig] and second-harmonic generation the model that will be considered below and found to give
in the presence of the self-defocusing Kerr nonlinedfly  rise to a rich variety of ESs is exactly the same which was
(the latter model with competing nonlinearities was intro-known to support vast families of ordinatmonembedded
duced earlier in a different contej@]). gap solitons. This, in particular, implies that ESs can be
It is relevant to stress that ESs, although they are isolatefbund in the corresponding system under the same conditions
solutions, arenot structurally unstable. Indeed, a small which are necessary for the observation of the regular soli-
change of the model's parameters will slightly change theons; i.e., the experiment may be quite straightforward. An
location of an ES(e.g., its energy and momentum; see be-estimate of the relevant physical parameters will be given at
low), but will not destroy it, which is clearly demonstrated the end of the paper.
by the already published result8,5]. In this respect, they The rest of the paper is organized as follows. In Sec. Il,
may be called generic solutions of codimension one. we recapitulate the model and obtain solutions in the form of
ESs are interesting because they naturally appear whemndamentakero-walkoffESs, which, physically, correspond
higher-ordei(singulay perturbations are added to the system,to the case when the Poynting vector of the carrier waves is
which may completely change its soliton spectrum. Opticalligned with the propagation direction. The analysis is ex-
ESs have a potential for applications, due to the very factended in Sec. Ill to the case of fundamentadlking ESs,
that they are isolated solitons, rather than occurring in coni.e. one for which the Poynting vector and the propagation
tinuous families. The stability problem for ESs was solved indistance are disaligned. Concluding remarks are collected in
a fairly general analytical form in Ref5], which was also Sec. IV.
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IIl. MODEL AND ZERO-WALKOFF SOLITONS

The model describespatial solitonsproduced by the
second-harmonic generatid8HG) in a planar waveguide,
in which two components of the fundamental harmdpid),

v, andv,, are linearly coupled by the Bragg reflection on a
grating in the form of a system of scores parallel to the

‘ s \ iy .1

propagation directiorz (for a more detailed description of
the model, which is dimensionless, J&4):
(V1) +i(vy)yxtVotvavs =0, (1)
1(V2),—1(Va)ytVvitvavi=0, )
2i(v3);—qva+D(V3)ytVv1vo=0. 3

Herevj is the second-harmoni&H) field, x is a normalized
transverse coordinate,is a real phase-mismatch parameter, FIG. 1. The k,q) parameter plane of the three-wave model
andD is an effective diffraction coefficient. The diffraction (1)—(3). The linear analysig¢the results of which are summarized in
terms in the FH equationd) and(2) are neglected as they the inset boxesshows that ES wittc=0 may occur only in the
are much weaker than the artificial diffraction induced by theregion between the solid bold lines. The bundle of curves emanat-
Bragg scattering, while the SH wave, propagatiagallel to ~ ing from the point k=1, g=—4) is composed of branches of
the grating, undergoes no reflection; hence the diffractiorfmPedded-soliton solutions with=0.
term is kept in Eq(3).
Experimental techniques for generation and observation —(4k+q)uz+Duz—2icuz+u,u,=0. ©)
of spatial solitons in planar waveguides are now well elabo- . . .
rated[9], and the waveguide carrying a set of parallel scores, Bef_or_e looking for ES_ solutl_ons to the fuII nonlinear equa-
with a spacing commensurate to the light wavelergthich ~ tONS, it is necessary to investigate the eigenvalues their
is necessary to realize the resonant Bragg scatteciag be Imearlzgd version, in order to isolate the region in which ESs
easily fabricated. Therefore, the present system provides Y €xist. Substitutinguy ,u,~expQé), and us~exp(2¢)
medium in which experimental observation of ESs is mosinto Eas.(6)—(8) and linearizing, one finds that the FH and
plausible. As mentioned above, the observation of ES in this' €quations decouple in the linearized approximation. The
system should be further facilitated by the fact that it sup-H €quations give rise to a biquadratic characteristic equa-
ports a multitude of distinct ES states, see below. tion
Equations(1)—(3) have three dynamical invariants: the
Hamiltonian, which will not be used below, the energy flux
(norm)

(1-cA)N*+2[(1+c?)k?— (1—c?) N2+ (k?—1)2=0,
(10

. and the SH equation produces another four eigenvalues
e= | TP 0o avlax, @ gven by

[DA2—(4k+q)]%+4c\?=0. (11
and the momentum
A necessary condition for the existence of ESs is that the
N e eigenvalues given by Eq10) have nonzero real parts—this
Pz'f,m [(VD)ivi+ (Va)ivat2(va)ivsldx.  (5) is necessary for the existence of exponentially localized
solutions—while the eigenvalues from E@.1) should be
The norm played a crucial role in the analysis of the ESpurely imaginary(otherwise, one will have ordinary, rather
stability carried out if5]. than embedded, solitonsThis discrimination between the
Soliton solutions to Eqg1)—(3) are sought in the form  two sets of the eigenvalues is due to the fact that E§jand
(8) for the FH components are always linearizable, while the
ViAX,z)=explikz)uy §), Vva(x,z)=exp2ikz)us, SH equation(9) may benonlinearizable which opens the
(6) possibility for the existence of E$5]. As follows from Egs.

whereé=x—cz, with c being thewalkoff (slope of the spa- (10) and(11), these two conditions imply

tial soliton’s axis relative to the light propagation direction k2+c2<1: 4k+q<c?D. (12)

The substitution of Eq(6) into Egs. (1)—(3) leads to an

eight-order system of ordinary differential equati¢@DES  For the case=0, the parametric region defined by the in-
for the real and imaginary parts of , 5 (primes standing for  equalities(12) is displayed in Fig. 1.

d/dé): In Ref. [8], numerous ordinarygap [10]) soliton solu-
tions to the present model have been found by means of a
numerical shooting method. To construct ES solutions, we
) applied the same method to Edq3), (8), and(9), allowing
—Kkup;—i(1+c)uy+us+usui =0, (8)  just one parameter to vary. From each ES solution that was

—kuy+i(1—c)u;+u,+uzu’ =0, (7)
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obtain an indefinitely large number of “excited statels's

an example, see the eighth state in Figd)R We stress,
however, that all the “excited states” belong to the class of
the fundamental solitons, rather than being bound states
thereof.

In Fig. 1, the first nine statedranchesare shown in the
(k,q) parametric plane. Note that the whole bundle of the
branches originates from the poik=€1, g=—4), which is
precisely the intersection of the two lines which limit the
existence region of E$see EQ.(12) with c=0]. At this
degenerate point, the linearizatiqgeee above gives four
zero eigenvalues. More branches than those depicted in Fig.
i 1 have been found, the numerical results clearly pointing
-4 - 0 v —ts towards the existence affinitely manybranches, accumu-

lating on the bordeg+4k=0 of the ES region. In the ac-

FIG. 2. Typical examples of the fundamental embedded soliton§UMmulation process, eachs component is successively
with the zero walkoff:(a) the ground state fok=0, (b) the same  Wider, while theu, , ones have more and more internal os-
solution for k=—0.95, and(c),(d) the first and eighth “excited Cillations.
states” fork=0. Sincek is an arbitrary propagation constant, on physical

grounds, the results obtained for the 0 solutions are better
found this way, branches of the solutions were continued irsummarized in terms of energy fli vs mismatchg (Fig.
the parameterk, g, andc, by means of the software package 3). Note that all the branches shown in Fig. 3 really terminate
AUTO [11]. Note that thec=0 solutions admit an invariant at their edge points, which exactly correspond to hitting the
reductionu,= —u}, uz=u}, which reduces the system to boundaryk=—1; see Fig. 1. Itis also noteworthy that all the
a fourth-order ODE system, thus making numerical shootingolutions are exponentially localized, except at the edge
feasible. pointk=—1, where a straightforward consideration of Egs.

We confine the analysis thundamentalsolitons, which  (7)—(9) demonstrates that, in this case, ES are weékiye-
implies that the SH componeni; has a single-humped braically) localized agx|—< [cf. Fig. 2b)]:
shape|a distinctive feature of gap solitons in the same sys-
tem is that not only fundamental solitons, but also certain Uy~ —(4k+q)|x| 7%, u,~(1/2)\—(4k+q)|x| 2,
double-humped two-solitorn®ound states of two fundamen-
tal solitong appear to be stablg8]]. Note that double- Ug~Xx 2.
humped and multihumped ESs must exist too as per a theo-
rem from Ref[12], but leaving them aside, we will still find Finally, we observe from Figs. 1 and 3 that the first
a rich structure of fundamental ESs. “excited-state” branch has a remarkable property that it cor-

We begin with a description of the results from the re-responds to a nearly constant valuepfThis means that
duced case=0, when an additional scaling allows us to setwhile, generally, ES are isolatg@odimension-1 solutions
D=1 without loss of generality. The results are displayed infor fixed values of the physical parameters, this branch is

Figs. 1-3. There is strong evidence for the existence of anearly generi¢ existing in a narrow interval of the values
infinite “fan” of fundamental ES branches. Among them, petween—4.0 and— 3.74.

we define aground-statesoliton as the one which has the
simplest internal structurfd=ig. 2(a)]. The next “first excited
state” differs by adding onéspatia) oscillation to the FH
field [Fig. 2(c)]. Adding each time an extra oscillation, we  We now turn to ESs witlt0, i.e.,walkingones. These
were sought for systematically by returning to the full

IIl. WALKING SOLITONS

1500, T eighth-order-ODE model and allowing th@To package to
L detect bifurcations(of the pitchfork type), while moving
150 along branches of the=0 solutions. It transpires thatl the
o0, bifurcating branches have+0; i.e., they arewalking ESs.
\ Such solutions are afodimension-2n the parameter space
(IR - - [i.e., the solutions can be represented by cuk¢e3, c(q)],

which can be established by a simple counting argument
0. after noting that the eighth-order linear system has two pairs
of pure imaginary eigenvalues. Alternatively, the walking

B0 ESs can be represented, in terms of the energy flux and mo-
0 mentum[see Eqs(4) and (5)], by curvesE(q) and P(q).
125 e 75 %0 25 0o g 25 We present results only for the walking solutions which bi-
furcate from the ground and first excited=0 states, while
FIG. 3. A diagram of thee=0 embedded solitons on thi-  other walking ESs can also be readily found.
mensionless energy-flux, mismajchlane. The inset zooms the It was found that the ground-state branch has exactly two

most interesting part of the diagram. bifurcation points, giving rise to two distinct walking-ES so-
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FIG. 5. Three branches of the walking#0) embedded soli-
tons bifurcating from thec=0 branch corresponding to the first
“excited state,” depicted similarly to Fig. 4. The inset(a shows
{iin detail the central part of the diagram.

FIG. 4. Two branches of “walking” ¢#0) embedded solitons
bifurcating from the ground-state=0 branch:(a) the walkoff ¢
and (b) the dimensionless energy flux vs the mismatchy. The
horizontal segment ifa) shows the branch of the=0 solutions.
The inset in(b) shows that the two branches meet and disappear vi

a typical tangent bifurcation. . . . . .
mentionedone-sidedsemistability of ESs, shown in a gen-

lution branchegup to a symmetry These new branches are eral form in[5]. Such a switching perturbation can be readily

shown, in terms of the most physically representatiyg) made controllable and movable if created by a laser beam

andE(q) dependences, in Fig. 4. Note that they, eventuallyJaunched normally to the planar waveguide and focused at a

coalesce and disappear. As the inset to Fig) dhows, they necessary spot on its surfaf®4]. Switching between the

disappear via a tangeffold or saddle-nodebifurcation. two branches withc#0 can be quite easy to realized too,
The first excited state has three bifurcation points. One oflue to small energy-flux and walkoff-momentum differences

them gives rise to a short branch of walking ESs that termibetween them; see Fig. 4.

nates, while two others appear to extendqte —co (their

ostensible “r_nerger” in Flg.. 5isan gr’qfact of plottinglt is IV. CONCLUSION

known that, in the large-mismatch lingt— — o, the present

three-wave model with quadratic nonlinearity goes over into To conclude the analysis, it is necessary to estimate the

a modified Thirring model with cubic nonlinear terrfis3]. actual size of the relevant physical parameters. This is, in

This suggests that the latter model may also support ES$act, quite easy to do, as there is no essential difference in the

However, consideration of this issue is beyond the scope afstimate from that which was presented in R8f.for ordi-

the present work. nary solitons in exactly the same model. This means that a
Figure 4 clearly shows that, in a certain interval of thediffraction length~1 cm is expected for the SH component,
mismatch parametey, the system gives rise toraultistabil-  and, definitely, the diffraction lengths for the FH compo-

ity, i.e., coexistence of different types of spatial solitons innents, which are subject to the strong Bragg scattering, will
the planar optical waveguidéor instance, taking account of be no larger than that. Thus, a sample with a size of a few cm
the fact that eacls# 0 branch has symmetric parts with the may be sufficient for the experimental observation of ESs.
opposite values of, we conclude that there afwe coexist- The sample may be an ordinary planar quadratically nonlin-
ing solutions atq taking values between about8 and ear waveguide with a set of parallel scores written on it. The
—11). This situation is of obvious interest for applications, other parameters, such as the power of the laser beam that
especially in terms of all-optical switching9]. Indeed, generates the solitons, etc., are expected to be the same as in
switching from a state with a larger value of the energy fluxthe usual experiments with the spatial solitg@$ As con-

to a neighboring one with a smaller flux can be easily initi-cerns the weak semi-instability of ESs, it may be of no prac-
ated by a small localized perturbation, in view of the above-+ical consequence for the experiment, as it would manifest
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itself only in a much larger sample. In this connection, it maysecond-harmonic-generating planar optical waveguide
be relevant to mention that, strictly speaking, the usual spaequipped with a quasi-one-dimensional Bragg grating. An
tial solitons observed in numerous experiments are all uninfinite sequence of fundamental embedded solitons was
stable (e.g., against transverse perturbatjois the usual found. They differ by the number of internal oscillations.
(linean sense, but the instability has no room to develop inThe embedded solitons are localized exponentially, except
real experimental samples. for a limiting degenerate case, when they become algebra-

Finally, we see from Figs. 4 and 5 that the maximumically localized. Branches of the zero-walkoff spatial solitons
walkoff that ESs can achieve is, in the present notationgive rise, through bifurcations, to several branches of walk-
slightly smaller than 1. According to the geometric interpre-ing solitons. The structure of the bifurcating branches pro-
tation of the underlying equatior{¢)—(3) (see the details in vides for a multistable configuration of the spatial optical
the original work in[8]), this implies that the maximum size solitons. This may find straightforward applications to all-
of the misalignment angle between the propagation directiolptical switching.
and the axis of the spatial soliton may be nearly the same as
the (smal) angle between the Poynting vectors of the two
FH waves and that of the SH wave.

To summarize the work, we have found a rich spectrum The stay of B.A.M. at the University of Bristol was sup-
of isolated solitons residing inside the continuous spectrunported by the Benjamin Meaker Fund. A.R.C. was supported
in a simple model of the three-wave spatial interaction in aby U.K. EPSRC.
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