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Embedded solitons in a three-wave system
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We report a rich spectrum of isolated solitons residing inside~embeddedinto! the continuous radiation
spectrum in a simple model of three-wave spatial interaction in a second-harmonic-generating planar optical
waveguide equipped with a quasi-one-dimensional Bragg grating. An infinite sequence of fundamental em-
bedded solitons is found, each one differing by the number of internal oscillations. Branches of these zero-
walkoff spatial solitons give rise, through bifurcations, to several secondary branches of walking solitons. The
structure of the bifurcating branches suggests a multistable configuration of spatial optical solitons, which may
find straightforward applications for all-optical switching.

PACS number~s!: 42.65.Tg, 42.65.Ky, 42.65.Wi, 02.60.Lj
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I. INTRODUCTION

Recent studies have revealed a novel class ofembedded
solitons~ESs! in various nonlinear-wave systems. An ES is
solitary wave which exists despite having its internal f
quency in resonance with linear~radiation! waves. ESs may
exist ascodimension-1solutions, i.e., at discrete values
the frequency, provided that the spectrum of the correspo
ing linearized system has~at least! two branches, one corre
sponding to exponentially localized solutions, the other o
to delocalized radiation modes. In such systems, quasilo
ized solutions~or ‘‘generalized solitary waves’’@1#! in the
form of a solitary wave resting on top of a small-amplitu
continuous-wave~cw! background are generic@2#. However,
at some special values of the internal frequency, the am
tude of the background may exactly vanish, giving rise to
isolated soliton embedded into the continuous spectrum.

Examples of ESs are available in water-wave models,
ing into account capillarity@3#, and in several nonlinear
optical systems, including a Bragg grating incorporati
wave-propagation terms@4# and second-harmonic generatio
in the presence of the self-defocusing Kerr nonlinearity@5#
~the latter model with competing nonlinearities was intr
duced earlier in a different context@6#!.

It is relevant to stress that ESs, although they are isola
solutions, arenot structurally unstable. Indeed, a sma
change of the model’s parameters will slightly change
location of an ES~e.g., its energy and momentum; see b
low!, but will not destroy it, which is clearly demonstrate
by the already published results@3,5#. In this respect, they
may be called generic solutions of codimension one.

ESs are interesting because they naturally appear w
higher-order~singular! perturbations are added to the syste
which may completely change its soliton spectrum. Opti
ESs have a potential for applications, due to the very f
that they are isolated solitons, rather than occurring in c
tinuous families. The stability problem for ESs was solved
a fairly general analytical form in Ref.@5#, which was also
PRE 611063-651X/2000/61~1!/886~5!/$15.00
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verified by direct simulations of the model considered. It w
demonstrated that ES is asemistableobject which is fully
stable to linear approximation, but is subject to a slow
growing ~subexponential! one-sided nonlinear instability
Development of this weak instability depends on values
the system’s parameters; in some cases, it is developin
slowly that the ES, to all practical purposes, may be regar
as a fully stable object@7#.

In the previously studied models, only a few branches
ESs were found, and only after careful numerical search
which suggest they may be hard to observe in a real exp
ment. The present work aims to investigate ESs in a rece
introduced model of a three-wave interaction in a quadr
cally nonlinear planar waveguide with a quasi-on
dimensional Bragg grating@8#, which can be quite easily
fabricated. It will be found that ESs occur in abundance
this model; hence it may be much easier to observe th
experimentally. It should also be stressed that, unlike pre
ously studied models, in which ESs appear in relatively
otic conditions, e.g., as a result of adding singular pertur
tions @4# or specially combining different nonlinearities@5#,
the model that will be considered below and found to g
rise to a rich variety of ESs is exactly the same which w
known to support vast families of ordinary~nonembedded!
gap solitons. This, in particular, implies that ESs can
found in the corresponding system under the same condit
which are necessary for the observation of the regular s
tons; i.e., the experiment may be quite straightforward.
estimate of the relevant physical parameters will be given
the end of the paper.

The rest of the paper is organized as follows. In Sec.
we recapitulate the model and obtain solutions in the form
fundamentalzero-walkoffESs, which, physically, correspon
to the case when the Poynting vector of the carrier wave
aligned with the propagation direction. The analysis is e
tended in Sec. III to the case of fundamentalwalking ESs,
i.e. one for which the Poynting vector and the propagat
distance are disaligned. Concluding remarks are collecte
Sec. IV.
886 ©2000 The American Physical Society
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PRE 61 887EMBEDDED SOLITONS IN A THREE-WAVE SYSTEM
II. MODEL AND ZERO-WALKOFF SOLITONS

The model describesspatial solitonsproduced by the
second-harmonic generation~SHG! in a planar waveguide
in which two components of the fundamental harmonic~FH!,
v1 andv2, are linearly coupled by the Bragg reflection on
grating in the form of a system of scores parallel to t
propagation directionz ~for a more detailed description o
the model, which is dimensionless, see@8#!:

i ~v1!z1 i ~v1!x1v21v3v2* 50, ~1!

i ~v2!z2 i ~v2!x1v11v3v1* 50, ~2!

2i ~v3!z2qv31D~v3!xx1v1v250. ~3!

Herev3 is the second-harmonic~SH! field, x is a normalized
transverse coordinate,q is a real phase-mismatch paramet
andD is an effective diffraction coefficient. The diffractio
terms in the FH equations~1! and ~2! are neglected as the
are much weaker than the artificial diffraction induced by
Bragg scattering, while the SH wave, propagatingparallel to
the grating, undergoes no reflection; hence the diffract
term is kept in Eq.~3!.

Experimental techniques for generation and observa
of spatial solitons in planar waveguides are now well ela
rated@9#, and the waveguide carrying a set of parallel sco
with a spacing commensurate to the light wavelength~which
is necessary to realize the resonant Bragg scattering! can be
easily fabricated. Therefore, the present system provide
medium in which experimental observation of ESs is m
plausible. As mentioned above, the observation of ES in
system should be further facilitated by the fact that it su
ports a multitude of distinct ES states, see below.

Equations~1!–~3! have three dynamical invariants: th
Hamiltonian, which will not be used below, the energy fl
~norm!

E[E
2`

1`

@ uv1~x!u21uv2~x!u214uv3u2#dx, ~4!

and the momentum

P[ i E
2`

1`

@~v1!x* v11~v2!x* v212~v3!x* v3#dx. ~5!

The norm played a crucial role in the analysis of the
stability carried out in@5#.

Soliton solutions to Eqs.~1!–~3! are sought in the form

v1,2~x,z!5exp~ ikz!u1,2~j!, v3~x,z!5exp~2ikz!u3 ,
~6!

wherej[x2cz, with c being thewalkoff ~slope! of the spa-
tial soliton’s axis relative to the light propagation directionz.
The substitution of Eq.~6! into Eqs. ~1!–~3! leads to an
eight-order system of ordinary differential equations~ODEs!
for the real and imaginary parts ofv1,2,3 ~primes standing for
d/dj):

2ku11 i ~12c!u181u21u3u2* 50, ~7!

2ku22 i ~11c!u281u11u3u1* 50, ~8!
,

e

n

n
-
s

a
t
is
-

2~4k1q!u31Du3922icu381u1u250. ~9!

Before looking for ES solutions to the full nonlinear equ
tions, it is necessary to investigate the eigenvaluesl of their
linearized version, in order to isolate the region in which E
may exist. Substitutingu1 ,u2;exp(lj), and u3;exp(2lj)
into Eqs.~6!–~8! and linearizing, one finds that the FH an
SH equations decouple in the linearized approximation. T
FH equations give rise to a biquadratic characteristic eq
tion

~12c2!2l412@~11c2!k22~12c2!#l21~k221!250,
~10!

and the SH equation produces another four eigenva
given by

@Dl22~4k1q!#214c2l250. ~11!

A necessary condition for the existence of ESs is that
eigenvalues given by Eq.~10! have nonzero real parts—thi
is necessary for the existence of exponentially localiz
solutions—while the eigenvalues from Eq.~11! should be
purely imaginary~otherwise, one will have ordinary, rathe
than embedded, solitons!. This discrimination between the
two sets of the eigenvalues is due to the fact that Eqs.~7! and
~8! for the FH components are always linearizable, while
SH equation~9! may benonlinearizable, which opens the
possibility for the existence of ESs@5#. As follows from Eqs.
~10! and ~11!, these two conditions imply

k21c2,1; 4k1q,c2/D. ~12!

For the casec50, the parametric region defined by the i
equalities~12! is displayed in Fig. 1.

In Ref. @8#, numerous ordinary~gap @10#! soliton solu-
tions to the present model have been found by means
numerical shooting method. To construct ES solutions,
applied the same method to Eqs.~7!, ~8!, and ~9!, allowing
just one parameter to vary. From each ES solution that

FIG. 1. The (k,q) parameter plane of the three-wave mod
~1!–~3!. The linear analysis~the results of which are summarized
the inset boxes! shows that ES withc50 may occur only in the
region between the solid bold lines. The bundle of curves ema
ing from the point (k51, q524) is composed of branches o
embedded-soliton solutions withc50.
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888 PRE 61ALAN R. CHAMPNEYS AND BORIS A. MALOMED
found this way, branches of the solutions were continued
the parametersk, q, andc, by means of the software packag
AUTO @11#. Note that thec50 solutions admit an invarian
reductionu252u1* , u35u3* , which reduces the system t
a fourth-order ODE system, thus making numerical shoot
feasible.

We confine the analysis tofundamentalsolitons, which
implies that the SH componentu3 has a single-humped
shape†a distinctive feature of gap solitons in the same s
tem is that not only fundamental solitons, but also cert
double-humped two-solitons~bound states of two fundamen
tal solitons! appear to be stable@8#‡. Note that double-
humped and multihumped ESs must exist too as per a t
rem from Ref.@12#, but leaving them aside, we will still find
a rich structure of fundamental ESs.

We begin with a description of the results from the r
duced casec50, when an additional scaling allows us to s
D[1 without loss of generality. The results are displayed
Figs. 1–3. There is strong evidence for the existence o
infinite ‘‘fan’’ of fundamental ES branches. Among them
we define aground-statesoliton as the one which has th
simplest internal structure@Fig. 2~a!#. The next ‘‘first excited
state’’ differs by adding one~spatial! oscillation to the FH
field @Fig. 2~c!#. Adding each time an extra oscillation, w

FIG. 3. A diagram of thec50 embedded solitons on the~di-
mensionless energy-flux, mismatch! plane. The inset zooms th
most interesting part of the diagram.

FIG. 2. Typical examples of the fundamental embedded solit
with the zero walkoff:~a! the ground state fork50, ~b! the same
solution for k520.95, and~c!,~d! the first and eighth ‘‘excited
states’’ fork50.
in

g

-
n

o-

-
t
n
n

obtain an indefinitely large number of ‘‘excited states’’@as
an example, see the eighth state in Fig. 2~d!#. We stress,
however, that all the ‘‘excited states’’ belong to the class
the fundamental solitons, rather than being bound sta
thereof.

In Fig. 1, the first nine states~branches! are shown in the
(k,q) parametric plane. Note that the whole bundle of t
branches originates from the point (k51, q524), which is
precisely the intersection of the two lines which limit th
existence region of ES@see Eq.~12! with c50#. At this
degenerate point, the linearization~see above! gives four
zero eigenvalues. More branches than those depicted in
1 have been found, the numerical results clearly point
towards the existence ofinfinitely manybranches, accumu
lating on the borderq14k50 of the ES region. In the ac
cumulation process, eachu3 component is successivel
wider, while theu1,2 ones have more and more internal o
cillations.

Sincek is an arbitrary propagation constant, on physic
grounds, the results obtained for thec50 solutions are bette
summarized in terms of energy fluxE vs mismatchq ~Fig.
3!. Note that all the branches shown in Fig. 3 really termin
at their edge points, which exactly correspond to hitting
boundaryk521; see Fig. 1. It is also noteworthy that all th
solutions are exponentially localized, except at the ed
point k521, where a straightforward consideration of Eq
~7!–~9! demonstrates that, in this case, ES are weakly~alge-
braically! localized asuxu→` @cf. Fig. 2~b!#:

u1'A2~4k1q!uxu21, u2'~1/2!A2~4k1q!uxu22,

u3'x22.

Finally, we observe from Figs. 1 and 3 that the fir
‘‘excited-state’’ branch has a remarkable property that it c
responds to a nearly constant value ofq. This means that
while, generally, ES are isolated~codimension-1! solutions
for fixed values of the physical parameters, this branch
nearly generic, existing in a narrow interval of theq values
between24.0 and23.74.

III. WALKING SOLITONS

We now turn to ESs withcÞ0, i.e.,walking ones. These
were sought for systematically by returning to the fu
eighth-order-ODE model and allowing theAUTO package to
detect bifurcations~of the pitchfork type!, while moving
along branches of thec50 solutions. It transpires thatall the
bifurcating branches havecÞ0; i.e., they arewalking ESs.
Such solutions are ofcodimension-2in the parameter spac
@i.e., the solutions can be represented by curvesk(q), c(q)#,
which can be established by a simple counting argum
after noting that the eighth-order linear system has two p
of pure imaginary eigenvalues. Alternatively, the walkin
ESs can be represented, in terms of the energy flux and
mentum@see Eqs.~4! and ~5!#, by curvesE(q) and P(q).
We present results only for the walking solutions which
furcate from the ground and first excitedc50 states, while
other walking ESs can also be readily found.

It was found that the ground-state branch has exactly
bifurcation points, giving rise to two distinct walking-ES so

s
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PRE 61 889EMBEDDED SOLITONS IN A THREE-WAVE SYSTEM
lution branches~up to a symmetry!. These new branches ar
shown, in terms of the most physically representativec(q)
andE(q) dependences, in Fig. 4. Note that they, eventua
coalesce and disappear. As the inset to Fig. 4~b! shows, they
disappear via a tangent~fold or saddle-node! bifurcation.

The first excited state has three bifurcation points. One
them gives rise to a short branch of walking ESs that ter
nates, while two others appear to extend toq52` ~their
ostensible ‘‘merger’’ in Fig. 5 is an artifact of plotting!. It is
known that, in the large-mismatch limitq→2`, the present
three-wave model with quadratic nonlinearity goes over i
a modified Thirring model with cubic nonlinear terms@13#.
This suggests that the latter model may also support E
However, consideration of this issue is beyond the scop
the present work.

Figure 4 clearly shows that, in a certain interval of t
mismatch parameterq, the system gives rise to amultistabil-
ity, i.e., coexistence of different types of spatial solitons
the planar optical waveguide~for instance, taking account o
the fact that eachcÞ0 branch has symmetric parts with th
opposite values ofc, we conclude that there arefive coexist-
ing solutions atq taking values between about28 and
211). This situation is of obvious interest for application
especially in terms of all-optical switching@9#. Indeed,
switching from a state with a larger value of the energy fl
to a neighboring one with a smaller flux can be easily in
ated by a small localized perturbation, in view of the abo

FIG. 4. Two branches of ‘‘walking’’ (cÞ0) embedded solitons
bifurcating from the ground-statec50 branch:~a! the walkoff c
and ~b! the dimensionless energy fluxE vs the mismatchq. The
horizontal segment in~a! shows the branch of thec50 solutions.
The inset in~b! shows that the two branches meet and disappear
a typical tangent bifurcation.
,

f
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,

-
-

mentionedone-sidedsemistability of ESs, shown in a gen
eral form in@5#. Such a switching perturbation can be read
made controllable and movable if created by a laser be
launched normally to the planar waveguide and focused
necessary spot on its surface@14#. Switching between the
two branches withcÞ0 can be quite easy to realized to
due to small energy-flux and walkoff-momentum differenc
between them; see Fig. 4.

IV. CONCLUSION

To conclude the analysis, it is necessary to estimate
actual size of the relevant physical parameters. This is
fact, quite easy to do, as there is no essential difference in
estimate from that which was presented in Ref.@8# for ordi-
nary solitons in exactly the same model. This means th
diffraction length;1 cm is expected for the SH componen
and, definitely, the diffraction lengths for the FH comp
nents, which are subject to the strong Bragg scattering,
be no larger than that. Thus, a sample with a size of a few
may be sufficient for the experimental observation of E
The sample may be an ordinary planar quadratically non
ear waveguide with a set of parallel scores written on it. T
other parameters, such as the power of the laser beam
generates the solitons, etc., are expected to be the same
the usual experiments with the spatial solitons@9#. As con-
cerns the weak semi-instability of ESs, it may be of no pr
tical consequence for the experiment, as it would manif

ia

FIG. 5. Three branches of the walking (cÞ0) embedded soli-
tons bifurcating from thec50 branch corresponding to the firs
‘‘excited state,’’ depicted similarly to Fig. 4. The inset in~a! shows
in detail the central part of the diagram.
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890 PRE 61ALAN R. CHAMPNEYS AND BORIS A. MALOMED
itself only in a much larger sample. In this connection, it m
be relevant to mention that, strictly speaking, the usual s
tial solitons observed in numerous experiments are all
stable ~e.g., against transverse perturbations! in the usual
~linear! sense, but the instability has no room to develop
real experimental samples.

Finally, we see from Figs. 4 and 5 that the maximu
walkoff that ESs can achieve is, in the present notati
slightly smaller than 1. According to the geometric interp
tation of the underlying equations~1!–~3! ~see the details in
the original work in@8#!, this implies that the maximum siz
of the misalignment angle between the propagation direc
and the axis of the spatial soliton may be nearly the sam
the ~small! angle between the Poynting vectors of the tw
FH waves and that of the SH wave.

To summarize the work, we have found a rich spectr
of isolated solitons residing inside the continuous spectr
in a simple model of the three-wave spatial interaction in
ll-
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t.

up
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,
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n
as

m
a

second-harmonic-generating planar optical wavegu
equipped with a quasi-one-dimensional Bragg grating.
infinite sequence of fundamental embedded solitons
found. They differ by the number of internal oscillation
The embedded solitons are localized exponentially, exc
for a limiting degenerate case, when they become alge
ically localized. Branches of the zero-walkoff spatial solito
give rise, through bifurcations, to several branches of wa
ing solitons. The structure of the bifurcating branches p
vides for a multistable configuration of the spatial optic
solitons. This may find straightforward applications to a
optical switching.
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